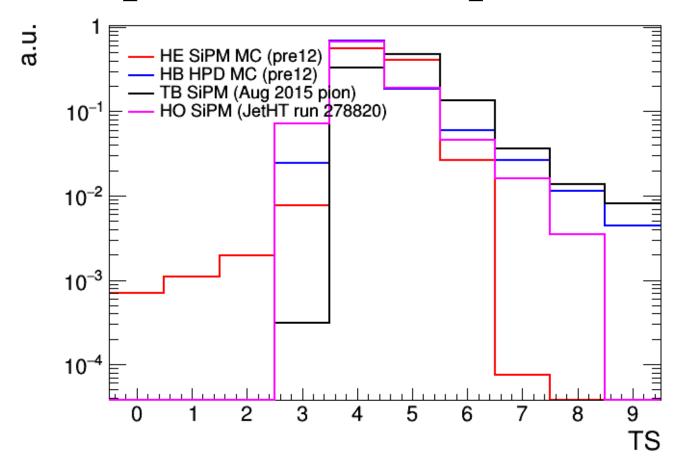

SiPM Pulse Study 3


Kevin Pedro
(FNAL)
October 11, 2016

Previously...

- sipm_pulse_shape_reco_MC.pdf
- sipm_pulse_study.pdf
- <u>sipm_pulse_study_2.pdf</u>
- <u>#15834</u>: restore doSiPMSmearing parameter
- Slight improvement of output pulses from DIGI simulation
- However, notable discrepancies remain in both noPU and PU samples

Output Pulse Comparison

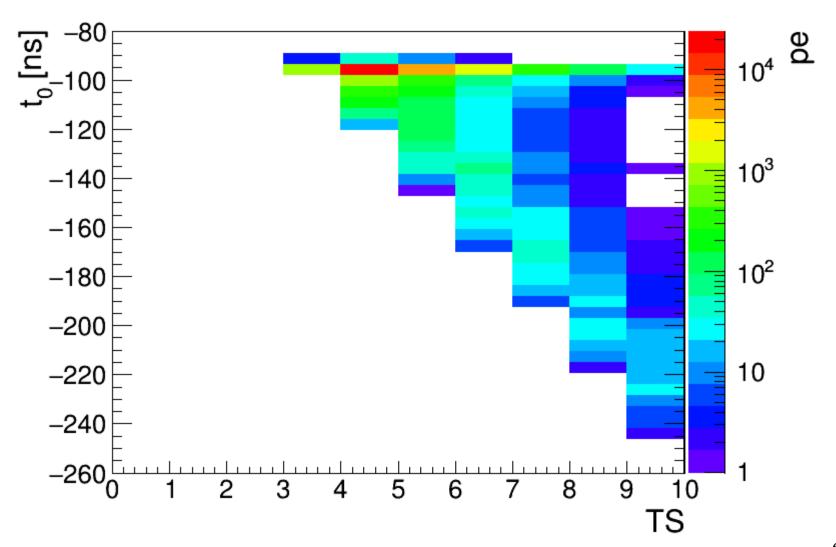
- Average pulses in fC (normalized to unit area, data is pedestal-subtracted)
- Moderate variations between HPD MC, SiPM testbeam, and SiPMs in HO
- However, SiPM MC is markedly different from all of them

Glossary

- n_{pe} = number of photoelectrons
- Pois(x) = throw Poisson random number with mean x
- $E_{sim} = SimHit energy$
- $f_{sam} = sampling factor$
- $g_{GeV/fC} = gain [GeV/fC]$
- $g_{fC/pe}$ = photoelectronsToAnalog [fC/pe]
- t_{rise} = rise time of pulse shape [ns]
- $t_{phase} = pars.timePhase [ns]$
- $t_{sim} = SimHit time [ns]$
- t_{flight} = time of flight for cell [ns]
- t_{bunch} = bunch spacing [ns]
- $b_{max} = pars.binOfMaximum$
- b_{shift} = CaloHitResponse::thePhaseShift_
- pulse[] = CaloSample array of pe vs. TS
- Shape(t) = evaluate pulse shape function for time t [ns]
- Y11() = throw random number according to Y11 pulse distribution [ns]
- photons[] = array of pe vs. precise time bin (used internally for SiPM sim)

HPD Output Pulse MC

- Input: SimHits, HPD pulse shape (convolution of HPD, Y11)
- $n_{pe} = Pois(E_{sim} \cdot f_{sam}/g_{GeV/fC}/g_{fC/pe})$
- $t_0 = t_{rise} + t_{phase} (t_{sim} t_{flight}) t_{bunch} \cdot (b_{max} b_{shift})$ = $0 + 6 - ([6:500] - [6:20]) - 25 \cdot (5 - 1)$
- $t_{bin} = t_0$ for bin in 0..10: if $t_{bin} \ge 0$: pulse[bin] = Shape(t_{bin})· n_{pe} $t_{bin} += t_{bunch}$


$$\rightarrow t_0 + b_1 \cdot t_{bunch} \ge 0, b_1 \in \mathbb{Z}$$

$$\rightarrow b_1 = ceil[-t_0/t_{bunch}] = ceil[(t_{sim} - t_{flight} - t_{rise} - t_{phase})/t_{bunch} + (b_{max} - b_{shift})]$$

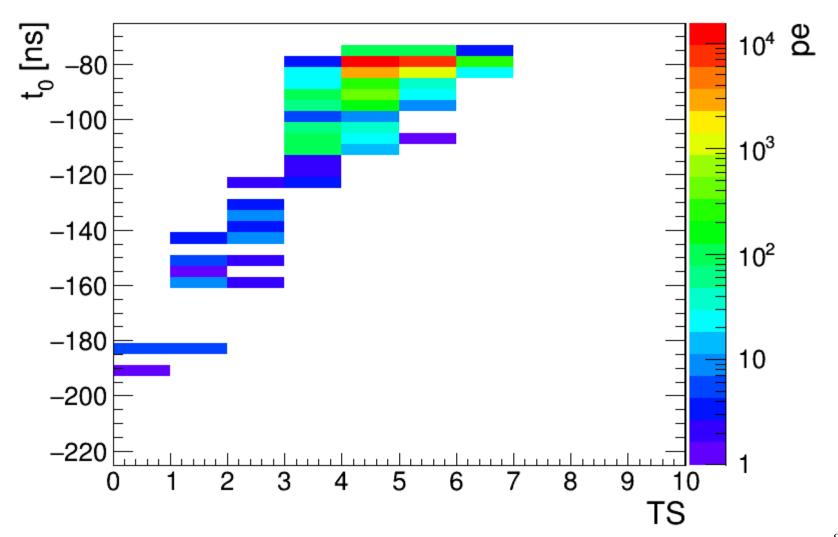
$$b_1 \sim t_{sim}$$

HPD: t₀ vs Output Pulse

Correct proportionality is observed

SiPM Output Pulse MC

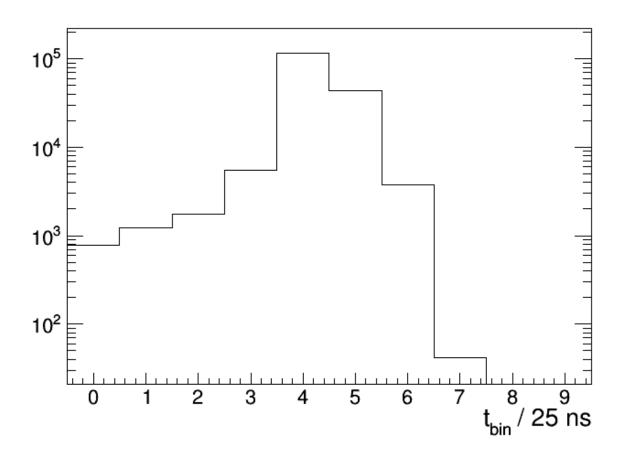
- Input: SimHits, SiPM pulse shape, Y11 pulse shape (separate)
- $n_{pe} = round[Pois(E_{sim} \cdot f_{sam}/g_{GeV/fC}/g_{fC/pe})]$
- $t_0 = t_{rise} + t_{phase} (t_{sim} t_{flight}) t_{bunch} \cdot (b_{max} b_{shift}) + t_{bunch} \cdot b_{max} + 50$ = $t_{rise} + t_{phase} - (t_{sim} - t_{flight}) + t_{bunch} \cdot b_{shift} + 50$ = 16.65 + 6 - ([6:500] - [6:20]) + 25 + 50
- for p in 0..n_{pe}:


$$t_{bin} = round[(Y11()+t_0)/0.5]$$

if $t_{bin} \ge 0$: photons $[t_{bin}] += 1$

• for b in photons: evaluate SiPM pulse starting in precise bin b with magnitude photons[b]

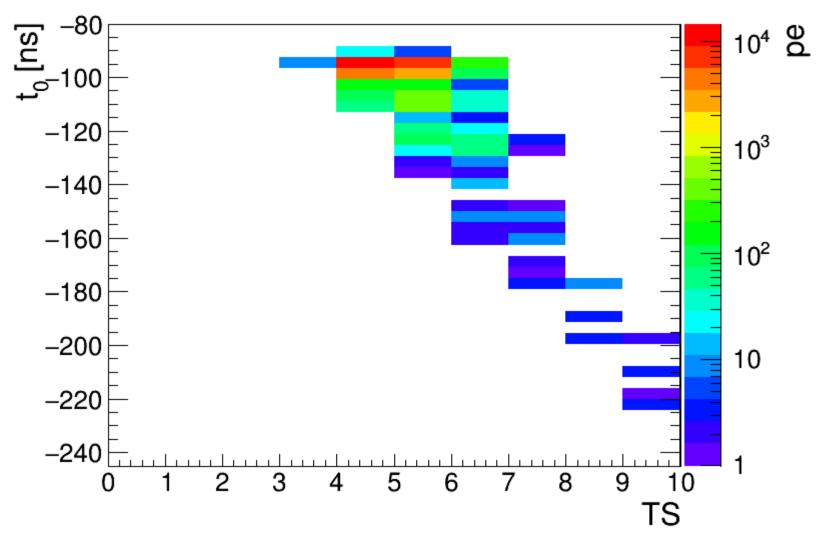
$$\rightarrow t_{\text{bin}} \sim -t_{\text{sim}} !!!$$


SiPM: t₀ vs Output Pulse

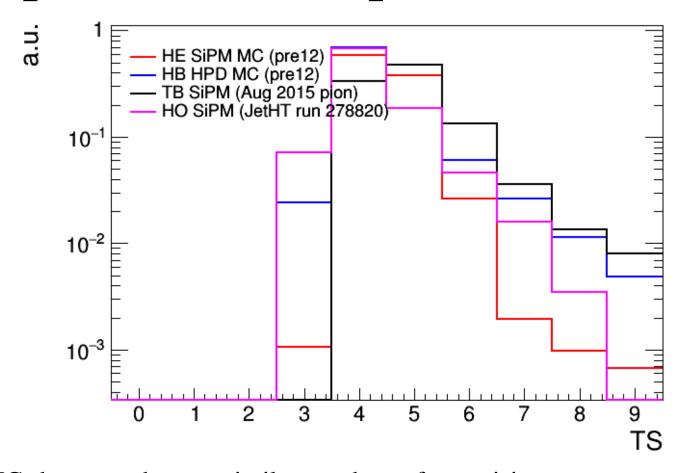
Wrong proportionality is observed

SiPM: Another Suggestive Plot

- Just plot $t_{bin} \cdot 0.5/25$, recalling $t_{bin} = round[(Y11()+t_0)/0.5]$
- Compare to slide 3: already a similar shape, without even evaluating SiPM pulse



SiPM Output Pulse MC: Revision


- Input: SimHits, SiPM pulse shape, Y11 pulse shape (separate)
- $n_{pe} = round[Pois(E_{sim} \cdot f_{sam}/g_{GeV/fC}/g_{fC/pe})]$
- $t_0 = t_{rise} + t_{phase} (t_{sim} t_{flight}) t_{bunch} \cdot (b_{max} b_{shift})$ = $0 + 6 - ([6:500] - [6:20]) - 25 \cdot (5 - 1)$
- $t_{bin} = -t_0/0.5$ for p in $0..n_{pe}$: $t'_{bin} = round[Y11()/0.5+t_{bin}]$ if $t'_{bin} \ge 0$: photons[t'_{bin}] += 1
- for b in photons: evaluate SiPM pulse starting in precise bin b with magnitude photons[b]

SiPM: t₀ vs Output Pulse Revised

Correct proportionality!

Output Pulse Comparison Revised

- SiPM MC shape much more similar to others after revision
- Still some difference in the high tail

Conclusion

- After intensive study, problem with SiPM output pulses has been determined
- A fix is proposed and being tested
- Branch with various debugging printouts and macros used in this study: https://github.com/kpedro88/cmssw/tree/DebugPulses_810pre12
- Branch with fix only: https://github.com/kpedro88/cmssw/tree/Phase1-HE8

Backup